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Abstract

Cognitive load theory assumes that cognitive demands that arise from the design of

learning materials (known as extraneous load) are major obstacles in the learning pro-

cess with (digital) media. Interactive digital media allow learners to utilize complex

learning materials that respond to user input. However, recent research on cognitive

load measurement has led to the question whether different survey instruments pro-

duce different measurements for extraneous load generated by interactive learning

media. In a laboratory experiment, we investigated this question using digital visuali-

zations. Most importantly, we found that two cognitive load questionnaires revealed

divergent results regarding the extraneous load involved in learning with interactive

visualizations. This finding indicates that different questionnaires may be needed for

different types of tasks in technology-enhanced learning settings. A more fundamen-

tal implication is that there needs to be greater consideration of different types of

extraneous load.
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Digital learning media can be enhanced with a wide variety of

interactive elements, setting them apart from more static forms of

instruction (for an overview, see Domagk, Schwartz, &

Plass, 2010). These elements range from basic user controls that

allow an influence over the presentation of instructional slides

(e.g., Tabbers & de Koeijer, 2010) to immersive digitally-enhanced

environments (e.g., Johnson-Glenberg, Megowan-Romanowicz,

Birchfield, & Savio-Ramos, 2016). However, the literature on inter-

activity also contains negative results, as there are instances in

which more static forms of learning media have resulted in better

learning performance than versions that incorporated features such

as user controls or related forms of responsive interfaces

(e.g., Song et al., 2014). Results such as these have been explained

in reference to an assumed cognitive overload (e.g., Skulmowski,

Pradel, Kühnert, Brunnett, & Rey, 2016). Based on these results,

we intend to more closely assess how to describe and measure the

cognitive load that can ensue from the use of interactive learning

media. In the next sections, we will first discuss theoretical models

of cognitive load, followed by an overview of issues for interactive

learning.

1 | COGNITIVE LOAD THEORY

As learners only have a certain working memory capacity at their

disposal, cognitive load theory presents a model aimed at maximiz-

ing the mental processing of relevant contents while minimizing the

negative effects of irrelevant contents that cause cognitive load

(Sweller, van Merriënboer, & Paas, 2019; for an older overview, see

Sweller, van Merrienboer, & Paas, 1998). Cognitive load theory
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postulates a mental capacity model in which the cognitive load

types intrinsic load and extraneous load are used to describe the total

mental load involved in learning processes (Sweller et al., 2019).

Simply put, the intrinsic load of a learning task is associated with

the task difficulty, more precisely with the complexity of learning

contents and their relations (Sweller et al., 1998). However, extrane-

ous load can be thought of as being influenced by the design

parameters of learning materials (Sweller et al., 1998). The central

point of cognitive load theory is that the limitations of learners' cog-

nitive capacities need to be considered, resulting in a need for

avoiding extraneous cognitive load in the design of learning mate-

rials (Sweller et al., 1998).

Importantly, there has been an effort to unite cognitive load the-

ory with usability research (e.g., Hollender, Hofmann, Deneke, &

Schmitz, 2010) and in many cases, research on technology-enhanced

learning has incorporated cognitive load ratings along with usability

surveys (e.g., Skulmowski et al., 2016). Since one potential source of

cognitive load in the design of learning materials is interactivity

(e.g., Kalyuga, 2007), our main objective is to examine extraneous load

in the context of interactive learning media in order to improve its

measurement.

2 | INTERACTIVE LEARNING

Interactive learning media typically involve some kind of user control

over the learning materials (for an overview, see Domagk

et al., 2010). This may include simple start and stop controls for ani-

mations (e.g., Song et al., 2014), letting learners manipulate items

presented on-screen (e.g., Kalet et al., 2012; Song et al., 2014), or

even providing learners with sophisticated simulations resembling

computer games (e.g., Johnson-Glenberg et al., 2016). It needs to be

noted that we exclusively refer to interactivity in the sense of user-

manipulable learning environments and do not use the term to

denote the concept of element interactivity (i.e., the complexity of

relations between learning items, Sweller, 1994). Giving learners

more control over the presentation of learning contents through

user controls resulted both in positive and negative effects (see

Scheiter & Gerjets, 2007, for an overview). While some types of

interactivity (e.g., simple click-based selections) have been shown to

enhance learning (e.g., Kalet et al., 2012), other studies conducted in

the field of medical instruction provide support for the conclusion

that static modes of presentation avoiding complicated interaction

patterns may outperform more interactive learning media (e.g., Garg,

Norman, Spero, & Maheshwari, 1999; Song et al., 2014). For

instance, a study in which an interactive desktop-based medical

training focusing on diagnostics allowed learners to click on ele-

ments of interest to use them in a task resulted in better learning

performance than asking learners to perform more complex drag-

and-drop interaction patterns with these items (Kalet et al., 2012).

In line with the studies presented in this section, our study similarly

uses a rather simple form of interactivity that lets learners switch

between two visualizations by clicking on the image.

3 | CONCEPTUALIZING AND MEASURING
EXTRANEOUS LOAD IN INTERACTIVE
LEARNING

The measurement of cognitive load remains a controversial aspect

(e.g., de Jong, 2010). A number of subjective survey instruments

aimed at measuring the cognitive load components separately have

been presented (e.g., Eysink et al., 2009; Klepsch, Schmitz, &

Seufert, 2017; Leppink, Paas, Van der Vleuten, van Gog, & van

Merriënboer, 2013). However, some researchers have acknowledged

that there may be various types of extraneous cognitive load

(e.g., Schnotz & Kürschner, 2007; Skulmowski et al., 2016). Schnotz

and Kürschner (2007) mention “[…] that different kinds of mis-

alignment are associated with different kinds of extraneous load”

(p. 481). Among others, they presented task complexity, the difficulty

of mentally combining separate information, and irrelevant instruc-

tional components as examples of different sources of extraneous

load (Schnotz & Kürschner, 2007).

Skulmowski and Rey (2017) reviewed recent results concerning

which methods of measuring cognitive load are the most appropriate

for more complex learning environments centered around (bodily)

activity and suggested that these types of environments require dif-

ferent types of cognitive load measurement techniques than other

types of learning scenarios. Most importantly, Skulmowski and

Rey (2017) distinguished (inter-)active settings from more verbally-

oriented modes of instruction and hint at the possibility that cognitive

load surveys featuring items targeted at the latter forms of instruction

may not be appropriate for interactive learning. Based on Skulmowski

and Rey (2017), we assume that the survey by Leppink et al. (2013)

may be more fitting for learning materials that primarily involve verbal

contents. This can be concluded from an example item of the instru-

ment, “The instructions and/or explanations were full of unclear lan-

guage.” (Leppink et al., 2013, p. 1070), with the other two extraneous

load items asking similar questions. Instead of using Eysink

et al.'s (2009) survey as discussed by Skulmowski and Rey (2017), we

chose to utilize a more recent, but similar, survey by Klepsch

et al. (2017). Among others, this survey features items targeted at

learners’ difficulties at accessing information, such as “During this

task, it was exhausting to find the important information.” (Klepsch

et al., 2017, p. 10).

As the number of different instruments available for cognitive load

measurement steadily increases, there have been attempts at compar-

ing different kinds of cognitive load measures (e.g., Naismith, Cheung,

Ringsted, & Cavalcanti, 2015; Szulewski, Gegenfurtner, Howes,

Sivilotti, & van Merriënboer, 2017). For instance, Naismith et al. (2015)

did not find significant correlations between Paas' (1992) cognitive load

item and the NASA Task Load Index (Hart & Staveland, 1988) while

their study revealed a significant correlation between the NASA Task

Load Index and their own six-item survey. In addition to these results,

Naismith and Cavalcanti (2015) draw the conclusion that several

instances of using cognitive load surveys suffer from low validity. It

should be noted that these results may suffer from a lack of compara-

bility between single-item instruments and multi-item surveys. To avoid
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this issue, we compare two relatively similar surveys that are both

explicitly aimed at measuring the same variable (extraneous load) and

mainly differ in their wording. Nevertheless, the comparisons and

reviews discussed in this section still raise an interesting question,

namely whether different measurement instruments can be used inter-

changeably in the context of interactive learning media.

4 | CHOOSING APPROPRIATE TESTS IN
THE CONTEXT OF INTERACTIVE LEARNING
MEDIA

While not the main focus of the article, we also investigated howmultiple

testing occasions and different test types can affect learning with interac-

tive media. As outlined above, a number of interactive features have been

found to hamper with learning (e.g., Song et al., 2014). Therefore, we

wanted to address whether the potential negative effects of interactive

learning media stemming from a higher cognitive load can be remedied by

two learning phases. Since digital learning environments are usually

designed for long-term usage, a second testing phase was included to

shed light onto the temporal dynamics of interactivity and learning.

The so-called testing effect postulates increases in retention per-

formance due to repeated occasions of retrieval (for an overview, see

Roediger & Butler, 2011). We aimed to investigate the effects of

repeated testing over time when using interactive learning media

compared with static versions of the same learning materials. As

reviewed by Rowland (2014), some studies have provided evidence

for the existence of the testing effect in short-term learning situations

(Rowland, 2014, cites Carpenter & DeLosh, 2006, as an example). We

chose a short interval for our study as we specifically wanted to

assess how information accessibility and the testing effect interact in

a very controlled, small-scale learning environment. Our general

research question concerning multiple rounds of testing was whether

extraneous load due to interactivity (see Skulmowski et al., 2016) will

have less of an impact with multiple learning phases.

5 | THE PRESENT EXPERIMENT

We conducted the experiment to assess how different cognitive

load surveys measure the extraneous load generated by interactive

elements. It is known that learning performance can be put in jeop-

ardy by requiring learners to relate separated information due to

increased attentional demands (known as the split-attention effect,

Sweller, Chandler, Tierney, & Cooper, 1990; Chandler &

Sweller, 1991, 1992; for a meta-analysis, see Schroeder &

Cenkci, 2018). Thus, we conducted our study using an interactive

function that allows learners to view two layers of an anatomical

diagram of the human back. The interactive condition lets learners

switch between drawings of two muscle layers, while the static ver-

sion shows these layers as one integrated image. Implementations

of user controls allowing learners to view different layers are used

in the field of medical education (see Yue, Kim, Ogawa, Stark, &

Kim, 2013, for an overview). However, previous research suggests

that having to keep track of dynamic presentations may be a cause

of lower learning performance (e.g., Lowe, 1999).

We hypothesized that Klepsch et al.'s (2017) survey would mea-

sure a larger difference in extraneous load than Leppink et al.'s (2013)

survey in the interactive version; with a smaller difference between

the survey scores in the static version (interaction effect: H1). Further-

more, we intended to investigate the effect of repeated testing by

repeating the learning phase and presenting the retention test twice

as well. As interactive features sometimes resulted in lower learning

performance in previous research (e.g., Song et al., 2014), we were

interested to see whether an interactive feature can lead to a stronger

rise in retention scores when learners are given a second opportunity

to learn with the interactive version compared to a static version.

Skulmowski et al. (2016) explain the lowered learning performance in

the interactive versions of Song et al. (2014) in terms of heightened

demands imposed by the user interface. Therefore, we assumed that

giving learners a second chance to learn with an interactive version

might be less strongly affected by the demands arising through the

need to learn the interface (interaction effect: H2).

6 | METHOD

6.1 | Participants and design

The study used a 2 × 2 mixed design with the between-subject factor

interactivity (static vs. switchable) and, depending on the dependent

variable, a within-subjects factor with two levels. Only 18–30-year-

old native speakers of German with little or no knowledge of back

muscle anatomy were eligible for participation. As we were not aware

of similar research comparing cognitive load surveys in this particular

context, we decided to be conservative in our power estimation and

assumed a rather small effect of ηp
2 = .04. A power analysis using

G*Power (Version 3.1.9.2; Faul, Erdfelder, Buchner, & Lang, 2009)

revealed that 50 participants were sufficient to detect a within-

between interaction with an estimated effect of ηp
2 = .04

(power = 0.80, α error probability = .05, correlation between repeated

measures = 0.5). The data of 50 participants were collected, but the

data of participants who did not interact with the learning materials in

one or both learning phases was not included in the analyses. There-

fore, the data of 42 participants (33 female, 9 male) were analyzed.

We used block randomization to achieve an almost balanced distribu-

tion between the two between-subjects groups (nstatic = 26,

nswitchable = 24), resulting in nstatic = 26 and nswitchable = 16 after

removing participants who did not interact with the learning materials.

Two additional incomplete datasets resulted from restarting the

experiment (before beginning the learning phase). Our participants

were students of Media Communication, Computer Science and Com-

munication Science, or Media and Instructional Psychology and took

part in partial fulfillment of course requirements. We conducted the

web-based experiment using SoSci Survey (Version 2.6.00-i; https://

www.soscisurvey.de).
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6.2 | Learning materials

Schematic line diagrams of the human back based on information

conveyed in medical illustrations (Bammes, 2009; Gray, 1918;

Tillmann, 2016) with nine labeled muscles were presented to the partic-

ipants (see Figure 1). In the static version, the superficial layer of mus-

cles was presented on the left half and deeper muscles were shown on

the right half of the image (see Figure 1a). In the interactive version,

participants swapped between these two layers by clicking on the

image (see Figure 1b,c). The JavaScript-based presentation logged the

count of switches between the layers in order to exclude participants

who did not engage with the interactive display as a means to enhance

data quality. Participants were not re-assigned to a different learning

setting in the second learning phase but were presented with the same

version (static or interactive) that they had used in the first phase.

6.3 | Retention tests

Retention performance was tested using a two-page labeling task

using versions of the two pictures of muscles presented in Figure 1b,c

(without color and with letters instead of the muscle labels). Partici-

pants responded to a test concerning the superficial muscles first (four

items) and, on the second test page, completed a test about the

deeper muscles (five items). The first page informed participants that

the two-page test was designed to test their knowledge concerning

the previously learned contents and that there was no time limit. They

were asked not to use any additional assistance. As these two test

pages were repeated after the second learning phase, the first page of

the second round of learning tests included a note that the following

learning test was identical to the first one. McDonald's ω

(McDonald, 1999) for the nine items of the first round of the reten-

tion test was .76; with ω = .79 for the second round of testing (one

question item result had to be removed for the latter analysis due to a

lack of variance). We used McDonald's ω for learning tests due to

numerous advantages of this reliability measure as outlined by Dunn,

Baguley, and Brunsden (2014). Scores were determined by awarding

participants one point for every correctly assigned muscle. The maxi-

mum score was nine points on each of the two rounds of testing.

6.4 | Extraneous load surveys

For our study, we chose to use the three items measuring extraneous

load in the survey developed by Klepsch et al. (2017) and adapted Ger-

man translations of three of the four extraneous load questions pres-

ented in Table 1 of Leppink and van den Heuvel (2015). The three items

from Leppink and van den Heuvel (2015) are largely identical to the three

items presented in appendix 1 of Leppink et al. (2013) and were chosen

due to license considerations. However, we will treat both versions of

the survey as identical throughout this paper and usually cite Leppink

et al. (2013) when discussing this instrument. For these three items, the

adaption only consisted in a change of the word “activity” to “task” in our

translation in order to be consistent with the items of Klepsch et al. (2017).

For all six extraneous load questions we used 7-point Likert scales with

endpoints labeled “absolutely wrong” and “absolutely right” in line with

Study 2 by Klepsch et al. (2017, p. 10). Reliability analyses resulted in

Cronbach's α = 0.88 for the survey by Klepsch et al. (2017) and

Cronbach's α = 0.79 for the survey by Leppink et al. (2013).

6.5 | Procedure

Participants provided informed consent and were displayed a survey

asking them if they were within our targeted age range of

18–30 years, were native speakers of German, have little or no knowl-

edge of the muscle anatomy of the back, and had not previously par-

ticipated in the study. Additionally, we asked them to select their

course of study and to specify their gender. Next, participants

received the instructions for the first learning phase, namely that they

would learn the superficial and deep anatomy of the back using a

labeled diagram on the following page. The instructions stated that

the names and positions of the muscles should be learned within 45 s.

For those participants who were assigned to the interactive condition,

an additional instruction stating that they could alternate between fig-

ures of the superficial and deep muscle layers by clicking on the image

was displayed. As soon as the learning phase of 45 s had elapsed, the

cognitive load survey page was displayed. The first retention test was

presented on the subsequent two pages. After this first block, the

instructions, learning phase (with a learning time of 45 s), and the

two-page retention test were repeated. Participants were thanked

and offered further information regarding the study.

7 | RESULTS

Based on simulation studies concerning the power of the Shapiro–

Wilk test, the test does not have adequate power to detect deviations

from the normal distribution when used on sample sizes comparable

to ours (Razali & Wah, 2011). Therefore, we used a nonparametric

version of the analysis of variance (ANOVA) procedure based on

aligned rank transformations (Fawcett & Salter, 1984) for the analyses

in this paper. As the three tests of a 2 × 2 ANOVA (i.e., two main

effects and one interaction effect) increase the Type I error (Cramer

et al., 2016) and since we used two different dependent variables, we

used Holm's sequential Bonferroni procedure (Holm, 1979) with the

two hypotheses listed above to control the Type I error.

7.1 | Extraneous load

The analysis was conducted using the aligned rank transformation

ANOVA procedure on averaged data. The hypothesized interaction

effect between the between-subjects factor and the within-subjects fac-

tor extraneous load test with two levels (Klepsch et al., 2017 vs. Leppink

et al., 2013) reached significance, F(1, 40) = 8.65, p = .005, ηp
2 = .18. This
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result indicates that the difference between extraneous load scores in

the two between-subjects groups is much stronger when measured with

Klepsch et al.'s (2017) survey compared to Leppink et al.'s (2013) survey

(see Figure 2a for the untransformed, averaged data). H1 was thus con-

firmed by the data.

Besides our hypothesized result, there were two significant main

effects. The interactive version significantly raised extraneous load com-

pared to the static version, F(1, 40) = 8.71, p = .005, ηp
2 = .18. The

Klepsch et al. (2017) survey resulted in significantly higher extraneous

load scores overall compared to the Leppink et al. (2013) survey,

F(1, 40) = 67.93, p < .001, ηp
2 = .63. The significant effect of interactivity

confirms that interactive learning settings can induce extraneous load.

7.2 | Retention

We again used aligned rank-transformed ANOVAs to analyze reten-

tion data, this time with the within-subjects factor learning phase

F IGURE 1 Learning materials
used in the experiment (based on
information conveyed in
Bammes, 2009; Gray, 1918;
Tillmann, 2016). (a) Static version.
Panels (b) and (c) show the two
images of the interactive version
in which participants could switch
between (b) and (c) by clicking on

the image
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(Phase 1 vs. Phase 2) and the between-subjects factor. Our hypothe-

sized interaction effect between the between-subjects factor and the

within-subjects factor did not result in a significant interaction,

p = .855. The untransformed data (see Figure 2b) show that the sec-

ond learning phase did not induce a stronger rise in retention perfor-

mance for the interactive group compared to the static group. In

addition to this result, there was a significant main effect of the factor

learning phase with higher retention results in the second learning

phase, F(1, 40) = 19.92, p < .001, ηp
2 = .33. There was no significant

effect of the factor interactivity (p = .776).

7.3 | Correlations

We computed the Spearman correlations between the retention

scores of the first learning phase and the two extraneous load mea-

sures (see Table 1). Both extraneous load surveys were significantly

positively correlated, but only the Klepsch et al. (2017) survey reached

a significant negative correlation with the retention scores of the first

learning phase (in line with the assumption that a higher extraneous

load is associated with a lower retention performance). This result

underlines the importance of choosing a suitable cognitive load

survey.

8 | DISCUSSION

We assessed the effects of the design of interactive learning environ-

ments on learning and cognitive load. As expected, we found that dif-

ferent extraneous load surveys deliver different results when used to

assess the mental demands of interactive learning media. While one

extraneous load survey (Klepsch et al., 2017) measured increased

extraneous load when participants used an interactive feature during

learning compared to a static version, the other survey (Leppink

et al., 2013) did not detect a large difference in extraneous load.

These results have far-reaching implications for cognitive load mea-

surement and cognitive load theory as a whole.

9 | IMPLICATIONS OF THE
MEASUREMENT OF EXTRANEOUS LOAD IN
INTERACTIVE LEARNING MEDIA

The results indicate that the current practices of cognitive load mea-

surement in the field of technology-enhanced learning are in dire need

for revision. We demonstrated that different surveys indicate vastly

different levels of extraneous load depending on whether the learning

environment included interactive elements or not. In light of our data

concerning the variability in the measurement of extraneous load, we

propose two major conclusions.

Generally speaking, the results support the claim that the lan-

guage used in different surveys should match the learning task

(as discussed by Skulmowski & Rey, 2017). In the context of activity-

based and interactive learning media, Skulmowski and Rey (2018)

suggested a more task-oriented approach based on Wilson and

Golonka (2013) that recommends the use of task analyses. A concep-

tualization of cognitive load involving a learner, a learning task, the

physical environment, and relations between these factors was intro-

duced by Choi, van Merriënboer, and Paas (2014). Based on these

models, we emphasize the importance of task analyses for the con-

ceptualization of extraneous load. Before selecting a cognitive load

survey, researchers should check their appropriateness for the learn-

ing task (Skulmowski & Rey, 2017). Our results demonstrate that mea-

suring extraneous cognitive load as it manifests itself in interactive

learning media requires a survey featuring question items focused on

the cognitive demands that potentially arise from the interaction

design (see also Skulmowski & Rey, 2017). However, more research is

TABLE 1 Spearman correlations between retention and extraneous load scores

Retention Klepsch et al. (2017) Leppink et al. (2013)

Retention Spearman's rho —

p —

Klepsch et al. (2017) Spearman's rho −.331 —

p .032 —

Leppink et al. (2013) Spearman's rho −.297 .641 —

p .056 <.001 —

F IGURE 2 Descriptive results of the experiment. (a) Boxplot of
the averaged extraneous load ratings (minimum = 1, maximum = 7).
(b) Boxplot of retention scores (minimum = 0, maximum = 9)
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needed to develop clear criteria and guidelines concerning the use of

different cognitive load surveys in different contexts.

A second conclusion that can be drawn from our results is that there

may be multiple types of extraneous load (as previously suggested, among

others, by Schnotz & Kürschner, 2007). In the case of our studies, the

extraneous load could be thought of as consisting of the mental demands

resulting from understanding the visuospatial arrangement of the anatomi-

cal parts on one hand and the demands created by interactive controls on

the other hand. Being instructed to memorize these anatomical structures

most likely generates very little extraneous load–yet the measurement of

this constituent of learning tasks is a major aspect of Leppink et al.'s (2013)

survey (as discussed by Skulmowski & Rey, 2017). While our results indi-

cate that certain surveys may be more appropriate than others in specific

contexts, we stress that this does not necessarily mean that one survey

will be superior across several contexts. Rather, the results support the

claim that the usefulness of a survey depends on contextual factors.

Therefore, our study provides evidence for the claim that cognitive load

surveys cannot be used interchangeably in all instructional settings.

Another important point is that Klepsch et al. (2017) emphasize

that their survey can be used in more diverse and short learning set-

tings while mentioning that Leppink et al. (2013) devised their instru-

ment for the evaluation of more extensive settings such as entire

courses. This aspect may have contributed to our results, but our

results still suggest that the wordings used by Klepsch et al. (2017)

make their survey more compatible with research on interactive learn-

ing media regardless of the duration or scope of a learning task. How-

ever, the aspect of learning duration and the suitability of surveys

should be empirically investigated in future studies.

10 | LIMITATIONS AND OUTLOOK

An important limitation of the study is the use of a small-scale learning

environment. It will be interesting to see whether our result will trans-

fer to other forms of technology-enhanced learning such as augmented

reality and virtual reality. Future research should compare additional

surveys across a wide variety of learning contexts. However, the use of

a limited and controlled learning environment was, in our opinion,

important for establishing a foundation for the divergent effects of cog-

nitive load surveys in interactive settings. Lastly, our investigation was

focused on the effects of interactivity on cognitive load and survey

measurement. Using the approach presented in this paper, further com-

parisons of cognitive load measurement in other contexts should be

conducted to see whether similar divergent effects emerge.

It should be noted that our study focused on the extraneous load

induced by the learning materials themselves and not a specific

method of instruction (such as using worked examples, Paas, 1992).

Hence, our approach is more aligned with the idea of using cognitive

load theory as a tool for measuring usability in the context of digital

learning media (see Hollender et al., 2010). Furthermore, more

research is needed to determine the suitability of germane load and

intrinsic load surveys for different learning settings, as our study only

included extraneous load ratings.

11 | CONCLUSION

Cognitive load measurement has been described as a challenging task

(e.g., de Jong, 2010). In line with perspectives suggesting that cognitive

load theory itself can be improved through new findings related to cog-

nitive load measurement (e.g., Paas, Tuovinen, Tabbers, & van

Gerven, 2003), we conducted a study focusing on the survey-based

measurement of extraneous load in interactive learning settings. Most

importantly, our results demonstrate that different cognitive load sur-

veys can lead to varying outcomes depending on the instructional design

of the learning task. As cognitive load is not only highly relevant for the

design of instructional materials, but also has been identified as a critical

component in the field of usability research (e.g., Hollender et al., 2010),

In sum, our results offer some of the first cues for the demanding task of

choosing extraneous load measures for interactive learning. Further

research will be necessary to establish more precise guidelines.
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